New Computational Methodologies Enable SSL to Measure and Self-Adjust Based on Conditions

May 6, 2019

An article published in the SPIE journal Optical Engineering, “Arbitrary spectral matching using multi-LED lighting systems,” marks a substantial advance in lighting science and technology. In their paper, the researchers announce a two-pronged approach to both measure and self-adjust the spectral power distributions (SPDs) of LED lighting systems. Their methodology demonstrates the system’s ability to maintain consistency and stability over an extended period of time.

Solid state lighting (SSL) can be used to enhance our vision, sleep patterns, and wellbeing. SSL benefits are evident across their wide use in residences and offices as well as across industrial and commercial sectors, including the ongoing development of applications in medicine, imaging, agriculture, communication, transportation, and museum lighting. Some of these applications require highly precise light spectra that don’t produce optical power variations or shifts in colour over time.

The four graphs show the best fit (blue solid line) to daylight D65 (a), an incandescent spectrum (b), the Melanopic (c) and a white LED spectrum (d) (Ph-LED YAG) (dashed black lines) made by optimizing the weights of the 10 different channels of the LED light engine (coloured dash-dot lines). In all cases the spectra were normalized and are shown in arbitrary units.

The open-access paper addresses two challenges: how to keep temperature changes and age-based deterioration from impacting a light emission’s strength, consistency, and colour, as well as providing a reliable, internal, self-monitoring method.

The authors use a fast-computation, high spectral fidelity algorithm to determine channel weights of a targeted SPD; in conjunction with that method, an internal microprocessor provides a closed-loop control system that monitors and corrects the spectral output, compensating for shifts due to temperature changes or LED wear and tear. The authors’ use of a general framework for multi-channel SSL systems ensures the universal applicability of their findings across different lighting technologies.

According to Optical Engineering Associate Editor, SPIE Senior Member, and U.S. Air Force Research Laboratory Technical Advisor Daniel A. LeMaster, the research showcases significant advances in terms of lighting technologies, “This method to monitor and quickly compensate for the colorimetric issues that arise from junction heating and LED aging will be of great utility in the global LED lighting market.”

The article authors are Aleix Llenas, of the Catalonia Institute for Energy Research (IREC) and Ledmotive Technologies, Spain, and Josep Carreras, of Ledmotive Technologies.

Michael T. Eismann, an SPIE Fellow and senior scientist at the U.S. Air Force Research Lab, is the editor-in-chief of Optical Engineering. The journal is published in print and digitally by SPIE in the SPIE Digital Library, which contains more than 500,000 publications from SPIE journals, proceedings, and books, with approximately 18,000 new research papers added each year.

About SPIE

SPIE is the international society for optics and photonics, an educational not-for-profit organization founded in 1955 to advance light-based science, engineering, and technology. The society serves 257,000 constituents from 173 countries, offering conferences and their published proceedings, continuing education, books, journals, and the SPIE Digital Library. In 2018, SPIE provided more than US$4 million in community support including scholarships and awards, outreach and advocacy programs, travel grants, public policy, and educational resources; www.spie.org.

This article was first published online by SPIE, the International Society for Optics and Photonics;spie.org/about-spie/press-room/press-releases/solid-state-lighting-self-adjusts-based-on-conditions.

Related Articles


Changing Scene


Design

  • Axis Lighting: Coldstream Municipal Office Project

    Axis Lighting: Coldstream Municipal Office Project

    As part of a comprehensive renovation of the Coldstream Municipal Office, Axis Lighting provided custom lighting solutions that combine performance and architectural refinement. The installation features Sculpt Patterns and Sculpt Recessed luminaires, enhancing both visual comfort and spatial definition throughout key gathering and circulation areas. Designed to support modern municipal workspaces and public engagement areas, the lighting… Read More…

  • RENO Lighting: Toronto Metropolitan University – Multi-Phase LED Lighting Retrofit Project

    RENO Lighting: Toronto Metropolitan University – Multi-Phase LED Lighting Retrofit Project

    A look at what’s underway at Toronto Metropolitan University. RENO Lighting has recently completed the first phase of a multi-phase lighting retrofit project at TMU—an important step in modernizing learning environments with their energy-efficient Prime AIM 2×2 back-lit panels. This is just the beginning. With additional floors scheduled for the new year, the project will… Read More…


New Products

  • Magic Lite: New Commercial Bollards

    Magic Lite: New Commercial Bollards

    Bollard lights have become a cornerstone in outdoor lighting, offering a unique combination of durability and high efficiency. Designed to thrive in outdoor environments, these lights excel at illuminating landscape areas while minimizing glare. Their practical yet aesthetically pleasing design makes them a perfect choice for illuminating pathways, gardens, driveways, and other outdoor spaces. Magic… Read More…

  • Liteline: LUNA PRO 3.5″ Trimless Multiples – The Same Clean Look, Now Multiplied

    Liteline: LUNA PRO 3.5″ Trimless Multiples – The Same Clean Look, Now Multiplied

    Liteline introduces their new LUNA PRO 3.5″ Trimless Multiples, available in round or square, with 1-light, 2-light, and 3-light configurations that deliver the same performance and aesthetic you’ve come to love from LUNA PRO 3.5″. Designed to provide a clean, modern architectural look, these trimless multiples blend seamlessly into the ceiling while providing greater light coverage… Read More…