Nanowires: the LEDs of the Future?

Technology Nanowires

Research from the University of Copenhagen shows that LEDs made from nanowires will use less energy and provide better light. Researchers from the university’s Niels Bohr Institute studied nanowires using X-ray microscopy, and with this method they can pinpoint exactly how to design nanowire so that it gives the best properties. The results are published in the scientific journal, ACS Nano.

Shown in the photo is a series of nanowires comprising an inner core of gallium-nitride (GaN) and a shell of indium-gallium-nitride (InGaN). The nanowires are 2 micrometers high (1 micrometer is a thousandth of a millimetre) and 400 nanometers in diameter (1 nanometer is a thousandth of a micrometer).

Nanowires are very small — about 2 micrometers high (1 micrometer is a thousandth of a millimetre) and 10-500 nanometers in diameter (1 nanometer is a thousandth of a micrometer).

Nanowires for LEDs are made up of an inner core of gallium nitride (GaN) and a layer of indium-gallium-nitride (InGaN) on the outside, both of which are semiconducting materials.

“The light in such a diode is dependent on the mechanical strain that exists between the two materials, and the strain is very dependent on how the two layers are in contact with each other,” explains Robert Feidenhans’l, professor and head of the Niels Bohr Institute. “We have examined a number of nanowires using X-ray microscopy and even though the nanowires should in principle be identical, we can see that they are different and have very different structures.”

Surprisingly efficient

The studies were performed using nanoscale X-ray microscopy in the electron synchrotron at DESY in Hamburg, Germany. The method is usually very time consuming and the results are often limited to very few or even a single study subject. But here researchers have managed to measure a series of upright nanowires all at once using a special design of a nanofocused X-ray without destroying the nanowires in the process. The researchers scanned a series of nanowires and measured the reflections from the different crystal planes of the nanowires. The location of the reflections provides information about tilt and deformations in the nanowires.
The X-ray images of each nanowire also show the distribution of the scattering intensity and the mechanical strain in the core of gallium-nitride and the shell of indium-gallium-nitride. The strain shows that the shell fits perfectly with the core.

“We measured 20 nanowires and when we saw the images, we were very surprised because you could clearly see the details of each nanowire. You can see the structure of both the inner core and the outer layer. If there are defects in the structure or if they are slightly bent, they do not function as well. So we can identify exactly which nanowires are the best and have the most efficient core/shell structure,” says Tomas Stankevic, a PhD student in the research group ‘Neutron and X-ray Scattering’ at the institute.

Professor Robert Feidenhans’l explains that there is great potential in such nanowires. They will provide a more natural light in LEDs and they will use much less power. In addition, they could be used in smart phones, televisions and many forms of lighting. The researchers expect that they could in use within five years.

 

 

 

Related Articles


Changing Scene


Design

  • Axis Lighting: Coldstream Municipal Office Project

    Axis Lighting: Coldstream Municipal Office Project

    As part of a comprehensive renovation of the Coldstream Municipal Office, Axis Lighting provided custom lighting solutions that combine performance and architectural refinement. The installation features Sculpt Patterns and Sculpt Recessed luminaires, enhancing both visual comfort and spatial definition throughout key gathering and circulation areas. Designed to support modern municipal workspaces and public engagement areas, the lighting… Read More…

  • RENO Lighting: Toronto Metropolitan University – Multi-Phase LED Lighting Retrofit Project

    RENO Lighting: Toronto Metropolitan University – Multi-Phase LED Lighting Retrofit Project

    A look at what’s underway at Toronto Metropolitan University. RENO Lighting has recently completed the first phase of a multi-phase lighting retrofit project at TMU—an important step in modernizing learning environments with their energy-efficient Prime AIM 2×2 back-lit panels. This is just the beginning. With additional floors scheduled for the new year, the project will… Read More…


New Products

  • Magic Lite: New Commercial Bollards

    Magic Lite: New Commercial Bollards

    Bollard lights have become a cornerstone in outdoor lighting, offering a unique combination of durability and high efficiency. Designed to thrive in outdoor environments, these lights excel at illuminating landscape areas while minimizing glare. Their practical yet aesthetically pleasing design makes them a perfect choice for illuminating pathways, gardens, driveways, and other outdoor spaces. Magic… Read More…

  • Liteline: LUNA PRO 3.5″ Trimless Multiples – The Same Clean Look, Now Multiplied

    Liteline: LUNA PRO 3.5″ Trimless Multiples – The Same Clean Look, Now Multiplied

    Liteline introduces their new LUNA PRO 3.5″ Trimless Multiples, available in round or square, with 1-light, 2-light, and 3-light configurations that deliver the same performance and aesthetic you’ve come to love from LUNA PRO 3.5″. Designed to provide a clean, modern architectural look, these trimless multiples blend seamlessly into the ceiling while providing greater light coverage… Read More…