A Nanophotonic Comeback for Incandescent Bulbs?

Incandescent Bulbs MIT

 Feb 08 2016

David L. Chandler

A proof-of-concept device built by MIT researchers demonstrates the principle of a two-stage process to make incandescent bulbs more efficient. This device already achieves efficiency comparable to some compact fluorescent and LED bulbs.

 Traditional light bulbs, thought to be well on their way to oblivion, may receive a reprieve thanks to a technological breakthrough.
Incandescent lighting and its warm, familiar glow are well over a century old yet survives virtually unchanged in homes around the world. This is changing fast, however, as regulations aimed at improving energy efficiency are phasing out the old bulbs in favour of more efficient compact fluorescent bulbs (CFLs) and LEDs.

Incandescent bulbs, commercially developed by Thomas Edison (and still used by cartoonists as the symbol of inventive insight), work by heating a thin tungsten wire to temperatures of around 2,700 degrees Celsius. That hot wire emits what is known as black body radiation, a very broad spectrum of light that provides a warm look and a faithful rendering of all colours in a scene.
But these bulbs have always suffered from one major problem: more than 95% of the energy that goes into them is wasted, most of it as heat. That’s why country after country has banned or is phasing out the inefficient technology. Now, researchers at MIT and Purdue University may have found a way to change all that.

The new findings are reported in the journal Nature Nanotechnology by three MIT professors — Marin Soljačić, professor of physics; John Joannopoulos, the Francis Wright Davis Professor of physics; and Gang Chen, the Carl Richard Soderberg Professor in Power Engineering — as well as MIT principal research scientist Ivan Celanovic, postdoc Ognjen Ilic, and Purdue physics professor (and MIT alumnus) Peter Bermel PhD ’07.

Light recycling
The key is to create a two-stage process, the researchers report. The first stage involves a conventional heated metal filament, with all its attendant losses. But instead of allowing the waste heat to dissipate in the form of infrared radiation, secondary structures surrounding the filament capture this radiation and reflect it back to the filament to be re-absorbed and re-emitted as visible light. These structures, a form of photonic crystal, are made of Earth-abundant elements and can be made using conventional material-deposition technology.

That second step makes a dramatic difference in how efficiently the system converts electricity into light. One quantity that characterizes a lighting source is the so-called luminous efficiency, which takes into account the response of the human eye. Whereas the luminous efficiency of conventional incandescent lights is 2%-3%, that of fluorescents (including CFLs) is 7%-15%, and that of most compact LEDs 5%-15%, the new two-stage incandescents could reach efficiencies as high as 40%, the team says.

The first proof-of-concept units made by the team do not yet reach that level, achieving about 6.6% efficiency. But even that preliminary result matches the efficiency of some of today’s CFLs and LEDs, they point out. And it is already a threefold improvement over the efficiency of today’s incandescents.
The team refers to their approach as “light recycling,” says Ilic, since their material takes in the unwanted, useless wavelengths of energy and converts them into the visible light wavelengths that are desired. “It recycles the energy that would otherwise be wasted,” says Soljačić.

Bulbs and beyond
One key to their success was designing a photonic crystal that works for a very wide range of wavelengths and angles. The photonic crystal itself is made as a stack of thin layers, deposited on a substrate. “When you put together layers, with the right thicknesses and sequence,” Ilic explains, you can get very efficient tuning of how the material interacts with light. In their system, the desired visible wavelengths pass right through the material and on out of the bulb, but the infrared wavelengths get reflected as if from a mirror. They then travel back to the filament, adding more heat that then gets converted to more light. Since only the visible ever gets out, the heat just keeps bouncing back in toward the filament until it finally ends up as visible light.

“The results are quite impressive, demonstrating luminosity and power efficiencies that rival those of conventional sources including fluorescent and LED bulbs,” says Alejandro Rodriguez, assistant professor of electrical engineering at Princeton University, who was not involved in this work. The findings, he says, “provide further evidence that application of novel photonic designs to old problems can lead to potentially new devices. I believe that this work will reinvigorate and set the stage for further studies of incandescence emitters, paving the way for the future design of commercially scalable structures.”

The technology involved has potential for many other applications besides light bulbs, Soljačić says. The same approach could “have dramatic implications” for the performance of energy-conversion schemes such as thermo-photovoltaics. In a thermo-photovoltaic device, heat from an external source (e.g., chemical, solar) makes a material glow, causing it to emit light that is converted into electricity by a photovoltaic absorber.
“LEDs are great things, and people should be buying them,” Soljačić says. “But understanding these basic properties” about the way light, heat, and matter interact and how the light’s energy can be more efficiently harnessed “is very important to a wide variety of things.”

He adds that “the ability to control thermal emissions is very important. That’s the real contribution of this work.” As for exactly which other practical applications are most likely to make use of this basic new technology, he says, “It’s too early to say.”

The work was supported by the Army Research Office through the MIT Institute for Soldier Nanotechnologies, and the S3TEC Energy Frontier Research Center funded by the U.S. Department of Energy.


David L. Chandler is a science writer at MIT‬.

 

 

Related Articles


Changing Scene

  • Aug 6, 2025 - Hèmèra Announces Acquistion by Industry Professionals Francois Renaud, Matthew Curatolo & Nicholas Cohen

    Hèmèra Announces a New Era of Innovation & Leadership

    Hèmèra has announced that it has been acquired by industry professionals François Renaud, Matthew Curatolo, and Nicolas Cohen. This acquisition marks the beginning of an exciting new era for Hèmèra, as the new leadership team is poised to build on the company’s legacy of delivering innovative, high-performance lighting solutions to discerning customers. The new leadership… Read More…

  • July 28, 2025 - Eureka Wins Multiple SIT Furniture Design Awards

    Eureka Wins Multiple SIT Furniture Design Awards

    Eureka is pleased to announce that it has received 2025 SIT Furniture Design Awards for its Junction, Lattice, and Velia luminaires. SIT Furniture Design Award was created to celebrate and share the remarkable work of furniture designers and those who use furniture in their projects. The creativity, innovative vision, and accessibility of the furniture design… Read More…


Design

  • How Do the Most Trusted Lighting Brands Stay at the Top

    How Do the Most Trusted Lighting Brands Stay at the Top

    In a competitive and constantly evolving lighting market, staying top-of-mind isn’t just about creating beautiful products, it’s about creating consistent value. Lighting professionals today are inundated with choices. From smart solutions and sustainable tech to design-forward fixtures, the options are vast. But amidst this sea of options, some brands always seem to rise to the… Read More…

  • A New Language of Light: Fluxwerx Unveils Speak Recessed Luminaire Family, Reimagining Architectural Integration & Performance

    A New Language of Light: Fluxwerx Unveils Speak Recessed Luminaire Family, Reimagining Architectural Integration & Performance

    Fluxwerx announces the launch of Speak—the latest addition to their expanding collection of LED luminaires for commercial, institutional, retail, hospitality and residential environments. Breaking from the paradigm of conventional downlights, Speak is a new meticulously designed luminaire family that elevates the dialogue between light, material, and spatial intent. Engineered as an extension of architectural form rather… Read More…


New Products

  • Eureka Introduces New Tulip Luminaire

    Eureka Introduces New Tulip Luminaire

    Eureka has announced the release of its new Tulip luminaires. The family features a range of fixtures that include chandeliers, pendants and surface mount units. The heart of the Tulip family is a bouquet-inspired arrangement that offers a contemporary take on a classic chandelier. The luminaire is constructed of aluminum tubes and acrylic diffusers. They… Read More…

  • Kuzco Lighting: Alora Mood Cosmo 39-in Chandelier

    Kuzco Lighting: Alora Mood Cosmo 39-in Chandelier

    Transform your space with the Cosmo lighting collection—a modern take on the timeless mid-century sputnik chandelier. Featuring opal ribbed glass shades, Cosmo adds a touch of sleek sophistication and a bold, contemporary feel to any room’s vibe. Designed for living room, dining room, foyer, bedroom, and beyond. Read More…