NEEA Studies Luminaire Level Lighting Controls

LDS Dilouie NEEA 400

Nov 6, 2020

By Craig DiLouie

The Northwest Energy Efficiency Alliance (NEEA) recently published a study seeking to compare one-for-one luminaire level lighting control (LLLC) retrofits with a comprehensive networked lighting controls (NLC) redesign. Conducted by the University of Oregon, the study found that a one-for-one LLLC upgrade produced comparable energy savings and lighting quality at a competitive cost.

LLLC involves installing LED luminaires, each embedded with one or more sensors, a luminaire controller, and a dimmable driver. This allows the luminaire to operate as an independent control zone. As a typical luminaire in an open office serves 80-120 sq.ft., this results in the highest degree of granularity in responsiveness, which typically produces maximum energy savings.

The control input is occupancy- and where applicable daylight-responsive. The control output may be ON/OFF, multilevel switching or dimming, or continuous dimming. Separate manual controls allow user override.

The luminaires may operate as independent control systems or unify within a connected system via installation of a gateway, which allows programming of sequences of operation and commissioning via software. As the luminaires are individually addressable in this scheme, they can be grouped for larger zone control. Additional control strategies can be deployed such as scheduling, plug load control, individual task tuning, and institutional task tuning (demand response and/or high-end trim). If two-way communication is featured, occupancy data can be fed to a server or the Cloud for monitoring and space utilization analysis.

NEEA engaged the University of Oregon to investigate whether LLLC installed in a one-for-one LED retrofit generated energy savings and lighting quality comparable to a comprehensive NLC redesign.

The researchers set up four workstations at the center of an 891-sq.ft. space that was 33 ft. wide east-west and 27 ft. deep north-south, with perimeter glazing along the northern face, as shown in the below plan. The baseline lighting system consisted of nine 4-ft. indirect/direct 32W T8 pendant luminaires laid out on a 3×3 grid and controlled by a wall switch.

Dilouie1

Five systems were installed, which included four LLLC options of increasing features (most of them qualifying them as networked lighting control systems themselves) along with a more comprehensive NLC system. The NLC redesign system featured remote ceiling-mounted sensors (four occupancy, two daylight, configured as shown below) and software-based control zoning of luminaires as well as data output for space utilization and asset tracking. All options involved a one-for-one replacement of the fluorescent luminaires with LED luminaires tuned to produce around 30 footcandles.

diloiuie2

 

Study participants performed various tasks and responded to questionnaires that generated subjective impressions of quality of light, brightness, light distribution, visual comfort, and wellbeing. Current transformers monitored lighting power draw. Additional information was collected about ease of installation, time to install, and installed cost.

Based on the monitoring, the LLLC options generated 50-74 percent energy savings for the controls alone (not including the LED upgrade), while the NLC solution demonstrated 67 percent savings. The researchers acknowledged the space was particularly well suited to LLLC as opposed to a more comprehensive solution. The highest-performing LLLC had additional features such as scheduling, task tuning, plug load control, and energy monitoring. The NLC performed best for savings due to high-end trim but lowest for occupancy and daylight sensing, which is due to fewer sensors and less granularity in the control response. And of course the NLC provided a significant non-energy benefit related to occupancy tracking.

All of the systems installed generally smoothly and without delays, though there were some challenges in equipment acquisition. The time and complexity involved in programming and commissioning varied across the systems. Participants regarded the indirect/direct lighting favorably but without any clear preference across the control systems. In this space, the installed cost for the LLLC was roughly one-third to one-half of the NLC redesign option.

The researchers concluded the one-for-one LLLC retrofits are cost-competitive and provide comparable performance as more comprehensive NLC solutions.

Click here to download the study.

Published with the permission of the Lighting Control Association

Source

Related Articles


Changing Scene


Design

  • Axis Lighting: Coldstream Municipal Office Project

    Axis Lighting: Coldstream Municipal Office Project

    As part of a comprehensive renovation of the Coldstream Municipal Office, Axis Lighting provided custom lighting solutions that combine performance and architectural refinement. The installation features Sculpt Patterns and Sculpt Recessed luminaires, enhancing both visual comfort and spatial definition throughout key gathering and circulation areas. Designed to support modern municipal workspaces and public engagement areas, the lighting… Read More…

  • RENO Lighting: Toronto Metropolitan University – Multi-Phase LED Lighting Retrofit Project

    RENO Lighting: Toronto Metropolitan University – Multi-Phase LED Lighting Retrofit Project

    A look at what’s underway at Toronto Metropolitan University. RENO Lighting has recently completed the first phase of a multi-phase lighting retrofit project at TMU—an important step in modernizing learning environments with their energy-efficient Prime AIM 2×2 back-lit panels. This is just the beginning. With additional floors scheduled for the new year, the project will… Read More…


New Products

  • Magic Lite: New Commercial Bollards

    Magic Lite: New Commercial Bollards

    Bollard lights have become a cornerstone in outdoor lighting, offering a unique combination of durability and high efficiency. Designed to thrive in outdoor environments, these lights excel at illuminating landscape areas while minimizing glare. Their practical yet aesthetically pleasing design makes them a perfect choice for illuminating pathways, gardens, driveways, and other outdoor spaces. Magic… Read More…

  • Liteline: LUNA PRO 3.5″ Trimless Multiples – The Same Clean Look, Now Multiplied

    Liteline: LUNA PRO 3.5″ Trimless Multiples – The Same Clean Look, Now Multiplied

    Liteline introduces their new LUNA PRO 3.5″ Trimless Multiples, available in round or square, with 1-light, 2-light, and 3-light configurations that deliver the same performance and aesthetic you’ve come to love from LUNA PRO 3.5″. Designed to provide a clean, modern architectural look, these trimless multiples blend seamlessly into the ceiling while providing greater light coverage… Read More…