Scientists Find Novel Method to Make Brighter Green LEDs

Brighter green LEDs

September 6, 2016

Researchers at the University of Illinois at Urbana Champaign have developed a new method for making brighter and more efficient green LEDs. Using an industry-standard semiconductor growth technique, they have created gallium nitride (GaN) cubic crystals grown on a silicon substrate that are capable of producing powerful green light for advanced solid-state lighting.

“This work is very revolutionary as it paves the way for novel green wavelength emitters that can target advanced solid-state lighting on a scalable CMOS-silicon platform by exploiting the new material, cubic gallium nitride,” says Can Bayram, an assistant professor of electrical and computer engineering at Illinois who first began investigating this material while at IBM T.J. Watson Research Center several years ago.

“The union of solid-state lighting with sensing (e.g., detection) and networking (e.g., communication) to enable smart (i.e., responsive and adaptive) visible lighting, is further poised to revolutionize how we utilize light. And CMOS-compatible LEDs can facilitate fast, efficient, low-power, and multi-functional technology solutions with less of a footprint and at an ever more affordable device price point for these applications.”

Typically, GaN forms in one of two crystal structures: hexagonal or cubic. Hexagonal GaN is thermodynamically stable and is by far the more conventional form of the semiconductor. However, hexagonal GaN is prone to a phenomenon known as polarization, where an internal electric field separates the negatively charged electrons and positively charged holes, preventing them from combining, which, in turn, diminishes the light output efficiency.

Until now, the only way researchers were able to make cubic GaN was to use molecular beam epitaxy, a very expensive and slow crystal growth method when compared to the widely used metal-organic chemical vapour deposition (MOCVD) method that Bayram used.

Bayram and his graduate student Richard Liu made the cubic GaN by using lithography and isotropic etching to create a U-shaped groove on Si (100). This non-conducting layer essentially served as a boundary that shapes the hexagonal material into cubic form.

This hexagonal-to-cubic phase transformation is shown in the photo. The scale bars represent 100 nm in all images. (a) Cross sectional and (b) Top-view SEM images of cubic GaN grown on U-grooved Si(100). (c) Cross sectional and (d) Top-view EBSD images of cubic GaN grown on U-grooved Si(100), showing cubic GaN in blue, and hexagonal GaN in red.
“Our cubic GaN does not have an internal electric field that separates the charge carriers — the holes and electrons,” explains Liu. “So, they can overlap and when that happens, the electrons and holes combine faster to produce light.”
Ultimately, Bayram and Liu believe their cubic GaN method may lead to LEDs free from the “droop” phenomenon that has plagued the LED industry for years. For green, blue, or ultra-violet LEDs, their light-emission efficiency declines as more current is injected, which is characterized as droop.

“Our work suggests polarization plays an important role in the droop, pushing the electrons and holes away from each other, particularly under low-injection current densities,” says Liu, who was the first author of the paper, “Maximizing Cubic Phase Gallium Nitride Surface Coverage on Nano-patterned Silicon (100),” appearing in Applied Physics Letters.
Having better performing green LEDs will open up new avenues for LEDs in general solid-state lighting. For example, these LEDs will provide energy savings by generating white light through a colour mixing approach. Other advanced applications include ultra-parallel LED connectivity through phosphor-free green LEDs, underwater communications, and biotechnology such as optogenetics and migraine treatment.

Enhanced green LEDs aren’t the only application for Bayram’s cubic GaN, which could someday replace silicon to make power electronic devices found in laptop power adapters and electronic substations, and it could replace mercury lamps to make ultra-violet LEDs that disinfect water.

Photo source: University of Illinois.

Related Articles


Changing Scene

  • July 28, 2025 - Eureka Wins Multiple SIT Furniture Design Awards

    Eureka Wins Multiple SIT Furniture Design Awards

    Eureka is pleased to announce that it has received 2025 SIT Furniture Design Awards for its Junction, Lattice, and Velia luminaires. SIT Furniture Design Award was created to celebrate and share the remarkable work of furniture designers and those who use furniture in their projects. The creativity, innovative vision, and accessibility of the furniture design… Read More…

  • Contact Delage & Solvic Announce New Representation Partnership

    New Collaboration – A New Solar Lighting Manufacturer Joins Contact Delage’s Offerings

    Contact Delage is excited to announce the addition of a new trusted partner to their lineup: Solvic, an innovative manufacturer specializing in solar lighting. This new partnership reflects Contact Delage’s ongoing commitment to offering sustainable, high-performance solutions tailored to real-world applications. With Solvic, they are expanding their range of autonomous solar products—perfect for lighting streets, parks,… Read More…


Design


New Products

  • SATCO|NUVO: LED Strip Retrofit Kits

    SATCO|NUVO: LED Strip Retrofit Kits

    SATCO|NUVO’s new LED Strip Retrofit Kits offer an energy-efficient solution for upgrading existing fluorescent strip fixtures. Designed with adjustable mounting strips to retrofit housings from 2.75″ to 5.25″ wide, these kits accommodate a wide range of installation needs. Available in 2ft, 4ft, and 8ft lengths, all models feature field-selectable technology (CCT and wattage). A white… Read More…

  • Legrand: Tazo Series Luminaire

    Legrand: Tazo Series Luminaire

    Tazo is an elegant, free-standing luminaire designed to bring the light where it’s needed and power to connected users. It delivers architectural quality lighting and the ultimate combination of performance and flexibility in workplaces and amenity, hospitality, or educational settings. A cord and plug design allows for easy reconfiguration of spaces where people work –… Read More…