How to Build a Control System

Control System

Nov 3, 2020

By Jeremy Day

Building a control system for a modern lighting installation can seem like an impossibly complex task. To simplify it, a systematic approach to understanding the needs of the design, facility, and user can be employed. In this white paper, we aim to define the questions one must answer to construct an appropriate control system.

First, and perhaps counterintuitively, one must start with the control narrative. A lighting programming and control narrative is a document that is essential to coordinate the design/construction process with a fully realized final architectural product. It defines how lighting will integrate into the space and, ultimately, how humans will interact with that same space. With the direction of the narrative, the necessary functionality of the control system can be defined. Is the intent for lights to automatically turn on and off with an astronomical time clock? Should lights be dimmed via daylight harvesting? What kind of shows or effects are desired? The answers to these questions will directly determine the size and scale of the control system. Without this narrative, assumptions will have to be made. The balancing act will be between providing a highly flexible control system and a system that is adequately capable yet cost effective.

Questions to ask yourself

1. What is the standard order of operations for a normal day?

2. What special events or holidays need a special program or scene?

3. What happens automatically vs. what happens via manual intervention?

Second, the number of controllable zones must be determined. An outdoor façade installation may have a floodlights-only zone, or it could also include linear grazing fixtures as well as direct view elements. Each of these zones will need to be controlled independently, and the control system must be sized appropriately. 

Questions to ask yourself

4. How many individually controllable zones are there (e.g. downlights, cove, accent, indirect, colour per room)?

Of note, to create a dynamic lighting system, the number of channels needed to put the system together must be well understood. A channel is defined as a single controlled attribute. For simple dimming only lights, one channel would be needed to control that dimmed intensity. For tunable white lights, two or three channels would be needed to adjust intensity and colour temperature, depending on the exact configuration of that fixture. A colour changing RGBW light would most likely need four channels, one for each Red, Green, Blue, and White control.

A simple system composed of only a white light fixture with a dimmable, static colour temperature will need only one DMX channel per zone. A more complex system, such as a linear run of colour-changing RGBW fixtures, could potentially need four channels per foot (or even eight per foot in exceptional circumstances). Of course, if the control narrative is clearly defined as “this linear run will only fade from Colour 1 to Colour 2 in unison,” that would eliminate the need for individually addressed fixtures and could significantly reduce the cost of the control system.

Figure 1Figure 2

Another consideration is requirements for Input and Output (I/O) signalling and integration. Some common examples of these I/Os are:

• fire alarms
• emergency conditions
• building automation systems
• occupancy and daylight sensors
• shades
• wind or other atmospheric sensors
• A/V integration

The control narrative will describe the necessary interactions, but the physical locations and quantities of I/O will determine the number of interfaces in the control system. A system composed of only a few lights might still require a larger more sophisticated control system based purely on the complexity of the I/O needs.

Figure 3

Questions to ask yourself

5. How many of each control I/O are required and at what locations?

The next key component to consider is user interfaces: How will the users interact with the system, turn lights on and off, raise and lower, change colours, advance scenes, etc.? Where will these interactions take place? You might need a keypad at every office and door, but what about the exterior lights? Where will they be controlled? In addition to physical control stations like keypads and touchscreens, virtual control like web pages and smart devices need to be considered and allotted for. 

Questions to ask yourself

6. List each user interface, including keypads, touchscreens, web access terminals, smart devices.

Figure 4

Finally, a consideration to make is whether to base a control system off DMX/RDM (a digital, daisy chained system for smaller systems) or Ethernet (a highly flexible and scalable system for projects of all sizes and complexities). Below are some key advantages of each protocol.

[Figure 5

Now that the requirements of the control system have been defined, the type, scale, and specifics of the control system can be chosen. Often tiers exist in control systems, sometimes defined by the number of universes, user interfaces, or I/O triggering. One specific requirement may bump the system up into a higher tier. Having a complete understanding of the scope of the control system will ensure that all requirements are covered by the capabilities of the control system. Lumenpulse sales engineers are experienced in the consultation and execution of control systems of all sizes and are available to consult on the needs, options, and budgets of this critical element of all lighting systems.

Understanding of the desired functionality of the lighting system will help right-size the control system to meet all needs without overspending and overcomplicating a project. Control systems come in many shapes and sizes, with trade-offs in capabilities, cost, and complexity. Lumenpulse is here to help clients balance these elements and choose the correct system at the right price and feature set.

Jeremy Day is a Lumenpulse Application Engineering Director. This article was first published online by Lumenpulse: www.lumenpulse.com/knowledge/how-to-build-a-control-system

Related Articles


Changing Scene

  • LEDVANCE Expands Ontario Presence with New Specification Agent

    LEDVANCE Expands Ontario Presence with New Specification Agent

    LEDVANCE is pleased to announce the appointment of Sterling Architectural Products Ltd. (Sterling Lights) as their new specification agent in Ontario. This partnership strengthens LEDVANCE’s presence in the region and reinforces their commitment to serving the professional lighting design and specification community with innovative, reliable lighting solutions. With decades of experience and a service-driven mindset,… Read More…

  • May 29, 2025 - Eureka Wins Three 2025 Red Dot Awards for Product Design

    Eureka Wins Three 2025 Red Dot Awards for Product Design

    Eureka is pleased to announce that its Velia, Cirra, and Junction luminaires have each received a 2025 Red Dot Design Award for Product Design. It is the 11th consecutive year that Eureka products have been honored with this prestigious award, which is a testament to the company’s consistency and relentless drive to design exceptional luminaires.… Read More…


Design

  • Graphic Office Interiors Enhance Their Office Space, Incorporating State-Of-The-Art Lighting Solutions

    Graphic Office Interiors Enhance Their Office Space, Incorporating State-Of-The-Art Lighting Solutions

    Graphic Office Interiors, a renowned office design and furnishings company serving Vancouver Island since 1966, embarked on a unique lighting project for their personal office in Saanichton, BC. This project marked the first collaboration between Kelly Inglis of Mac’s II Agencies and Graphic Office Interiors’ in-house registered interior designer, Laura Harlos. Known for their exclusive Steelcase furniture line, modular moveable… Read More…

  • Illuminate Your Project with Modern LED Panels

    Illuminate Your Project with Modern LED Panels

    Lighting plays a crucial role is shaping the ambiance and functionality of any space. At Zaneen, their modern LED Panel collection delivers high-quality lighting solutions with sleek designs, energy efficiency, and customizable options to meet diverse project needs. From trim designs like Harmony Elipse and Harmony Square to frameless panes like Infinite Honeycomb and Infinite Ring, to modular marvels like Infinite Canvas and… Read More…


New Products

  • Legrand Unveils Wattstopper i3:  Next-Generation Lighting & Building Intelligence Solution Powered by KODE Labs

    Legrand Unveils Wattstopper i3:  Next-Generation Lighting & Building Intelligence Solution Powered by KODE Labs

    Legrand has announced the launch of the Wattstopper i3 Platform, a next-generation lighting and building intelligence solution powered by KODE Labs, a recognized name in advanced smart building technology. Wattstopper i3 unites Legrand’s established Wattstopper DLM and Wattstopper PLUS systems under a cohesive interface. With KODE’s award-winning OS at its core, the platform consolidates data… Read More…

  • Acuity: New C1D2 Emergency Exit Combo – HLEMC

    Acuity: New C1D2 Emergency Exit Combo – HLEMC

    The HLEMC from Holophane is a high-performing, IP66 rated emergency exit combo that is designed for use in Class 1, Div 2, groups A, B, C, & D hazardous environments, meeting up to a T3C temperature rating. The HLEMC is designed with a one-piece corrosion-resistant enclosure that is high-impact resistant to protect fixture against elements,… Read More…