Lighting Design & Specification

Dec 8, 2020

LDS mesh Programmable 400By Steve Mesh

Some of the recent blog posts have described different components in Networked Lighting Control (NLC) systems. We’ve talked a lot about the building blocks that are needed to create lighting systems that feature some kind of ability to change colors – either “dim-to-warm,” “tunable-white,” or even “full color-changing (RGB)” type systems.

As a quick review, in order to have a lighting system that allows for some kind of color changing, you need the following components:

  • Multiple LED arrays (light engines) with different colored LEDs … or arrays with multiple sets of LEDs … or arrays that use LEDs all of which have separately addressable dies contained within them.
  • One or more drivers. For “tunable-white” systems – if “single-channel” drivers are used, then you would need at least two drivers (one to drive each of the two colors); multi-channel drivers are now available that allow you to control two separate sets of LED arrays using a single driver.
  • Controls – some sort of user interface is required to allow you to select the color you want from the LED array(s). Although it’s possible with certain systems to use multiple analog devices (such as two 0-10V dimmers) to control intensity and CCT in a tunable-white system, there are drawbacks to this as described in previous blog posts.
  • Brains – something in the system has to have enough intelligence to take the user input and then tell everything else what to do. These brains may be incorporated directly into controls, or they may be in separate components installed in luminaires.  Regardless of where they are located, some kind of brain(s) must be in a system designed to allow for complex functionality such as color changing.
  • In systems designed for “full color-changing” (RGB), other types of drivers and controls are necessary – and they are used to control LED arrays (light engines) with at least three primaries (colors), and sometimes more. These drivers and their associated controls are different than those required for tunable-white light, which typically only address two separate channels of LED primaries.

One of the subjects we haven’t yet covered in detail is LED drivers.  Because of new features provided by many lighting control systems, such as the ability to change colors, some drivers now available in the market are also “programmable.”  What does this mean?  And why would you want to use programmable drivers?

Some manufacturers currently provide entire systems that are pre-programmed with certain functionality.  For example, systems are available that come with all the building blocks that you need for tunable-white lighting.  This includes LED arrays (light engines) with two sets of LED primaries (for example 3000K and 5000K), pre-programmed drivers, and controls to allow you to select the desired CCT and intensity.  The below image offered as an example shows a Wattstopper three-primary system that gives you the ability to select CCTs which are all on the blackbody locus in the CIE diagram.  Since the manufacturer gives you everything you need, they can pre-program everything into the drivers (and controls) in the factory.  All you need to do is to install the equipment, then use the controls to select the desired intensity and CCT.

Mesh image1

Blanco 2 and Blanco 3 by Wattstopper

However, what happens if you specify luminaires from one vendor and want to use a control system made by another vendor?  In that case, the LED drivers are typically shipped to the luminaire vendor who buys them on an OEM basis.  How could the driver manufacturer know beforehand what their drivers will be driving?  They probably can’t, or don’t.  Someone must tell these drivers about the LEDs they will be powering.

Some manufacturers now offer “programmable” drivers that allow you to specify the CCT and current limits at both ends of the spectrum for a two-channel system.  As a reminder, two-channel systems are those that employ two sets of LED arrays (each with LEDs of different CCTs), or LED arrays with two sets of primaries on the same physical board.  These are for “tunable-white” systems.  Remember that full color-changing (or “RGB”) systems require that you control three (or more) sets of primaries.  So, two-channel systems are only for tunable-white purposes – to allow you to select colors between 3000-5000K, or perhaps 2700-6500K, for example.

When these tunable-white multi-channel drivers are shipped from a driver manufacturer on an OEM basis to a luminaire manufacturer, the driver manufacturer doesn’t know what types of LED arrays they will be powering.  So, some driver manufacturers have developed methods to allow luminaire manufacturers (or others) to set certain parameters themselves, which give us the programmable driver.  In a multi-channel (2-channel) tunable-white driver, someone has to specify the upper and lower limits of CCTs based on the LED arrays they will be driving.  It’s also necessary to specify the secondary current at both ends of the spectrum.  If you recall from a previous blog post, you can’t just drive two separate sets of LED arrays to the maximum – because you’ll never be able to achieve the same output at any other CCT other than the one in the middle of the spectrum.  So, the drivers need to know what the current draw is at both ends of the spectrum so the system can determine appropriate limitations.  That allows you to achieve the same maximum output at any CCT.

In some cases, these programmable drivers use a proprietary protocol to communicate with associated controls, such as Lutron’s T-Series.  Lutron sells a device that is similar to a charging pad for a mobile phone.  However, in this case, it’s transmitting information to the driver via radio waves and is not used for charging!  You place one end of the driver directly on the pad, and you use a software interface from your computer to transmit the appropriate variables to the driver for the LED arrays you plan to use.  This can be used by a luminaire vendor so that they can program the drivers based on whatever LED arrays they are using in any product.

Mesh2

Lutron T-series programmable drivers

Mesh3

In other cases, programmable drivers actually use open protocols such as DALI (Digital Addressable Lighting Interface).  I think you can see that the issue of “programmability” is separate from the issue of the protocol the driver uses to communicate with controls.  This allows you to specify LED arrays and luminaires from one vendor, drivers from another, and controls from yet another.  This may give you more choices, but there are also more players in case something goes wrong.  If you use drivers with a proprietary protocol used with associated control systems designed to work with those drivers, then you’ve eliminated one of the players in the process.

Mesh4

OSRAM TW-series DALI drivers

Now that vendors are starting to offer some degree of programmability in their drivers, they are beginning to incorporate even more features into these products.  So, besides offering the ability to specify CCTs and drive currents at both ends of the spectrum for multi-channel tunable-white drivers, some have started to incorporate the following programmable features as well:

  • Power cycle behavior – this allows the user to decide what happens when the power cycles off and then on again. For example, you can set the drivers to remain off, or you can set them to recall a specific scene (or light level), or you can set them to follow a DALI standard for such behavior.
  • Minimum light output – you can set a minimum light output from the LED array. In some cases, light from LEDs drops out at low levels.  This is essentially “low-end” trim that will help you avoid this problem.
  • Different operating modes for DALI drivers – the low-voltage DALI bus requires a power supply. In a large space, specifying/purchasing/installing a separate DALI power supply for the low-voltage DALI network bus isn’t a big deal.  However, that may be significantly more onerous in a smaller space.  So at least one manufacturer allows you to use their drivers in a mode in which the driver itself supplies enough power for a limited number of components.  Or you can program it to be used “normally” (meaning that you use a separate power supply and don’t need the driver to provide power to the DALI bus).

As they say – with great power comes great responsibility.  There is a lot of power in the complexity of these recent driver offerings.  But the responsibility is yours to understand what these manufacturers are offering, then figure out where, when and why you may want to use them.  Hopefully they will add lots of great value to your projects going forward.

Published with the written permission of Lighting Controls Association

This article was first published at: lightingcontrolsassociation.org

Steven Mesh is an award-winning lighting designer who has designed lighting and control systems for a variety of project types (commercial, museums, schools, residential, restaurants, retail, historic, healthcare, etc.). As an educator, he has taught classes and given presentations about lighting and controls across North America and internationally. One of his is developing lighting and lighting controls courses that rely on hands-on and/or interactive content.

Retrofit it Your Way with Visioneering’s LRK-TRH

Changing Scene

  • Prev
The Lighting Research Center (LRC) recently released its latest publication, Lighting Answers: UV ...
TPL Lighting, a full service supplier of architectural lighting and controls for the Greater ...
The LIT Lighting Design Awards was created to recognize the efforts of talented international ...
From designers of custom and modular systems to cultivators and processors, the need for certified, ...
Signify Canada will now refer to a select collection of Signify North America luminaire brands as ...
The Northern Lighting Awards recognises exemplary lighting and controls as designed and integrated ...
The International Association of Lighting Designers (IALD) has announced the ...
Signify Canada has added Jean-Francois Ouellet as Eastern Zone Sales Leader for Signify Canada ...
A new edition of UL 8802, the Outline of Investigation for Germicidal Systems, titled UV ...
The DesignLights Consortium (DLC) today issued a Request for Proposals (RFP) seeking consultant ...

Changing Scene

Leviton Business PortalLeviton Canada announced the availability of its second generation eBusiness platform, Leviton B2B. The new online ordering system is designed with several enhanced features to simplify the critical needs of distributor procurement and sales professionals.

“We have designed our eBusiness platform with our distribution partners’ operational needs in mind,” said Jason Prevost, President and Chief Operating Officer at Leviton Canada. “We have improved the user experience on our new B2B portal allowing them to be more efficient.”


Read More


 

Design

  • Prev
“Authentic design” is an important concept that we value at LightForm. Well, of course we do: we ...
 The Lighting Control Innovation Award was created in 2011 as part of the Illuminating ...
Located on an island within the San Francisco Bay, Naval Air Station Alameda was decommissioned in ...
Ottawa’s River Dental location, adjacent to the Rideau River and Rideau Canal, inspired an office ...
When it comes to establishing a trend and setting a mood, Fiona Rimmer, Interior Designer ...
The light installation Het Licht van Jan (Jan's light) was unveiled today in an ...
A leading urban trend is the creation of signature dynamic lighting designs for iconic downtown ...
In Part 1 of this interview with Leora Radetsky, we covered smart lighting, ...
For years, officials in Calgary, Alberta have been concerned with improving the perceived sense of ...
In a recent article on LEDs, we covered numerous topics and questions to help consumers buy ...

LED Technology

  • Prev
The Alberta Electrical Association (AEA) held their first virtual Learning Expo this past week, ...
Some of the recent blog posts have described different components in Networked Lighting Control ...
The Northwest Energy Efficiency Alliance (NEEA) recently published a study seeking to compare ...
Consumer UVC germicidal devices are entering the market rapidly because of an increased demand for ...
Scientists at the Circadian Light Research Center have identified the narrow band of blue light ...
Pierre Longtin, President of Nyx Hemera, was proud to announce the installation of TLACS-A, ...

New Products

Lighting Controls AssociationThis month, we explore a dynamic lighting controls installation at an automated distribution center in Ontario. Lighting control design by Hammerschlag and Joffe Inc. Photography by Terri Nowik, Light Monkeys.

The design team was presented multiple objectives for this 200,000 sq.ft. pharmaceutical Distribution Centre renovation, including fitting out a class A 10,000 sq.ft. office for executives and employees.



 

 

Read More


 

New Products

  • Prev
The new WSXA Series offers all the benefits of the WSX Series but with improved functionality and ...
The new AimLite LED backlit panel lights P14BR series utilize next-generation backlit technology, ...
SKYE is a high-performance, easy to install residential grade downlight solution that offers good ...
The eLumigen High CRI C1D2 LED Fixture is the ideal light source replacement for Paint Booth, ...
The eLumigen LED Linear Vapor Tight fixtures are designed for installation at mounting heights of ...
Introducing the new in-sourced, upgraded, and expanded vapor tight LED High Bay -- the ...
Liteline Corporation's 4¼" aluminum remodel housing is now available in black in addition to ...
Aculux 2" LED Precision Luminaires With the diminutive 2"Aculux LED precision luminaire, you can ...
Enjoy faster, simpler installation with preconfigured wireless occupancy sensor kits, resulting in ...
Philips Hue Phoenix from Royal Philips is the first in a new range of white ambience connected ...
Kerrwil Publications Great Place to Work. Certified December 2019 - December 2020

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2021 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil