Study Results could Lead to a New Class of Materials for Making LEDs

Xianfeng Duan

 

The California NanoSystems Institute’s Xiangfeng Duan A new study by researchers from the California NanoSystems Institute at UCLA is the first demonstration of electroluminescence from multilayer molybdenum disulfide, or MoS2, a discovery that could lead to a new class of materials for making LEDs. The study, led by Xianfeng Duan, professor of chemistry and biochemistry, was published in the journal Nature Communications on July 1, 2015.

Over the last decade, advances in LED have helped to improve the performance of devices ranging from television and computer screens to flashlights. As the uses for LEDs expand, scientists continue to look for ways to increase their efficiency while simplifying how they are manufactured. In the new study, Duan and first author Dehui Li, a postdoctoral scholar in Duan’s lab, created the first multilayer molybdenum disulfide device that shows strong luminescence when electrical current is passed through it.

In its single-layer form, molybdenum disulfide is optically active, meaning that it emits light when electric current is run through it or when it is shot with a nondestructive laser. Multilayer molybdenum disulfide, by contrast, is easier and less expensive to produce, but it is not normally luminescent.

“We were trying to make a vertically stacked light-emitting device based on monolayer MoS2, but it was difficult to get the efficiency as high as we wanted,” says Duan. “On the other hand, it was rather surprising for us to discover that similar vertical devices made of multilayer MoS2 somehow showed very strong electroluminescence, which was completely unexpected since the multilayer MoS2 is generally believed to be optically inactive. So we followed this new lead to investigate the underlying mechanism and the potential of multilayer MoS2 in light-emitting devices.”

Duan and his team used a technique called electric field-induced enhancement, which relocates the electrons from a dark state to a luminescent state, thereby increasing the material’s ability to convert electrons into light particles, or photons. With this technique, the multilayer MoS2 semiconductors are at least as efficient as monolayer ones.

Duan’s team is currently moving forward to apply this approach to similar materials, including tungsten diselenide, molybdenum diselenide and tungsten disulphide, with the goal of helping to create a new generation of light-emitting devices from two-dimensional layered materials, which are less expensive and easier to use in manufacturing.

Read the article in Nature Communications www.nature.com/ncomms/2015/150701/ncomms8509/full/ncomms8509.html

 

Related Articles


Changing Scene

  • Aug 6, 2025 - Hèmèra Announces Acquistion by Industry Professionals Francois Renaud, Matthew Curatolo & Nicholas Cohen

    Hèmèra Announces a New Era of Innovation & Leadership

    Hèmèra has announced that it has been acquired by industry professionals François Renaud, Matthew Curatolo, and Nicolas Cohen. This acquisition marks the beginning of an exciting new era for Hèmèra, as the new leadership team is poised to build on the company’s legacy of delivering innovative, high-performance lighting solutions to discerning customers. The new leadership… Read More…

  • July 28, 2025 - Eureka Wins Multiple SIT Furniture Design Awards

    Eureka Wins Multiple SIT Furniture Design Awards

    Eureka is pleased to announce that it has received 2025 SIT Furniture Design Awards for its Junction, Lattice, and Velia luminaires. SIT Furniture Design Award was created to celebrate and share the remarkable work of furniture designers and those who use furniture in their projects. The creativity, innovative vision, and accessibility of the furniture design… Read More…


Design

  • OPTI-SELECT Technology by LEDVANCE: The One Fixture That Does It All

    OPTI-SELECT Technology by LEDVANCE: The One Fixture That Does It All

    OPTI-SELECT is LEDVANCE’s proprietary line of field-adjustable LED luminaires and lamps. Its core idea and unique selling point is that one single fixture can do all the job. Traditional lighting fixtures require ordering a specific SKU for each combination of these specs. On the contrary, OPTI-SELECT combines multiple lighting options in one fixture. It lets you… Read More…

  • Turning the Page on Fluorescent Lighting: Lutron’s C-Flex Solution

    Turning the Page on Fluorescent Lighting: Lutron’s C-Flex Solution

    Starting in 2026, Canada will begin phasing out lamps that contain mercury — including the fluorescent tubes still widely used in commercial, institutional, and public buildings. This regulatory shift only adds to a reality already in place: fluorescent ballasts have not been manufactured for over two years. In anticipation of these changes, Lutron developed C-Flex — a… Read More…


New Products

  • Cristal: CCLPD-DMX – 0-10V DMX Relay Panels

    Cristal: CCLPD-DMX – 0-10V DMX Relay Panels

    The CCLPD-DMX panels of Cristal Contrôle have been designed respecting the same standards as the distribution panels of electrical rooms in modern buildings. Thanks to this standardization, the installation of relay panels with dimming is quick and easy. The series of CCLPD-DMX relay panels is equipped with the DMX communication protocol and is designed to host HID relay… Read More…

  • ABB Emergi-Lite: JMC Series – Steel, Compact, 6V & 12V

    ABB Emergi-Lite: JMC Series – Steel, Compact, 6V & 12V

    ABB Emergi-Lite’s JMC Series battery unit’s emergency lighting system shall consist of fully automatic equipment with two emergency lighting heads. The unit shall be rated V with a capacity of W for 30 minutes of emergency operation. The charger shall be factory set with a charging voltage tolerance of ± 1% to enable a longer… Read More…