How the Right Lighting Could Save the Mona Lisa

July 22, 2019

Dorukalp Durmus 

Next time you’re in a museum or art gallery, observe each painting a little more closely. You may notice cracks on the surface of the canvas, especially if the painting is very old.

The damage you see is caused by radiant energy striking the painting’s surface — and light (visible radiation) causes irreversible damage to artwork.

However, all is not lost. Our new research shows that optimized smart lighting systems can reduce damage to paintings while preserving their colour appearance.

The dilemma

Damage to artwork by infrared, ultraviolet and visible radiation is well documented. When a photon (an elementary light particle) is absorbed by a pigment in paint, the pigment molecule elevates to a higher energy state. In this excited state, the molecule’s chemical composition changes. This is called a photochemical action. 

Viewed from the human perspective, the photochemical action manifests itself as cracks, discolouration, or surface hardening.

Not surprisingly, daylight, which includes infrared and ultraviolet radiation, is highly damaging to paintings. In museums, it is common practice to use incandescent, and more recently, LEDs, to reduce damage. 

However, a group of researchers showed that light can cause colour degradation regardless of the lighting technology. Bright yellow colours in Van Gogh’s famous Sunflowers are turning dark brown due to absorption of blue and green light from LEDs. Research on the conservation of artwork makes it look like this is a losing battle. 

Of course, you will be right in thinking that the best conservation method would be the complete absence of light. But we need light for visibility and to appreciate the beauty of a painting. This leaves us with a dilemma of two conflicting parameters: visibility and damage.

Light optimization

Lighting technology in itself may not be enough to tackle this dilemma. However, the way we use technology can make a difference. 

Our approach to address this problem is based on three key facts: 

  1. light triggers photochemical actions only when it is absorbed by a pigment
  2. the reflectance factor of a pigment (its effectiveness in reflecting light) determines the amount of light absorption
  3. light output (composition of the light spectrum, and the intensity of the light) of lighting devices, such as LEDs, can be fine-tuned.

It is possible to measure the reflectance factor of a painting and optimize lighting to reduce absorption. Previous research shows that optimizing light to lessen absorption can reduce energy consumption significantly, and with no loss in visual experience. Objects look equally natural and attractive under optimized light sources compared to regular white light sources. 

In this new study, we optimized LEDs for five paintings to reduce light absorption. Using a genetic algorithm (an artificial intelligence technique), we reduced light absorption between 19% and 47%. Besides the benefits for the painting, this method almost halved the energy consumed by lighting. 

In addition to increased sustainability and art conservation, the colour quality of the paintings was another parameter in our optimization process. Colour appearance and brightness of paintings were held constant not to lower the appreciation of the artwork.

This is possible due to a quirk in our visual system. Photoreceptor cone cells, the cells in our retinas that enable human colour vision, are not equally sensitive to the whole visible spectrum. 

Different combinations of wavelength and intensity can result in identical signals in our brain. This understanding gives us the flexibility of using different light sources to facilitate identical colour appearances. 

This smart lighting system requires scanning of the artwork to obtain colour information. Then, a precise projection system emits optimized lighting to the painting. 

This method offers a solution to extend the lifetime of works of art, such as the world-famous Mona Lisa, without leaving them in the dark.

Dorukalp Durmus is an Honorary Associate, University of Sydney. This article was first published online by the University of Sydney: theconversation.com/how-the-right-lighting-could-save-the-mona-lisa-95938. It has been lightly edited.

Photo source: Juan Di Nella on Unsplash

Related Articles


Changing Scene

  • July 28, 2025 - Eureka Wins Multiple SIT Furniture Design Awards

    Eureka Wins Multiple SIT Furniture Design Awards

    Eureka is pleased to announce that it has received 2025 SIT Furniture Design Awards for its Junction, Lattice, and Velia luminaires. SIT Furniture Design Award was created to celebrate and share the remarkable work of furniture designers and those who use furniture in their projects. The creativity, innovative vision, and accessibility of the furniture design… Read More…

  • Contact Delage & Solvic Announce New Representation Partnership

    New Collaboration – A New Solar Lighting Manufacturer Joins Contact Delage’s Offerings

    Contact Delage is excited to announce the addition of a new trusted partner to their lineup: Solvic, an innovative manufacturer specializing in solar lighting. This new partnership reflects Contact Delage’s ongoing commitment to offering sustainable, high-performance solutions tailored to real-world applications. With Solvic, they are expanding their range of autonomous solar products—perfect for lighting streets, parks,… Read More…


Design

  • How Do Solar Lights Work?

    How Do Solar Lights Work?

    Traditional lighting fixtures continuously consume power resources and increase carbon emissions. In contrast, solar lighting becomes more and more popular. With the development of green energy technology, solar lights have shown strong market potential in multiple application scenarios such as outdoor lighting, landscaping and public facilities. Compared with traditional lighting equipment, they have the advantages of… Read More…

  • Unboring Project: Mitchell Eye Centre by JWA Design

    Unboring Project: Mitchell Eye Centre by JWA Design

    At LightForm, they thrive on lighting projects that are anything but ordinary.​ That’s why they are excited to introduce Unboring Projects, a new series where they spotlight the spaces that subvert convention, move the needle forward, and show what is possible when great design meets bold vision. First up: the Mitchell Eye Centre in Calgary,… Read More…


New Products

  • Prolux: Lumithree PT-1016 Glass Diffuser Pendant

    Prolux: Lumithree PT-1016 Glass Diffuser Pendant

    The PT-1016 is a glass diffuser that can be mounted in any room to provide an elegant touch. The diffuser comes in several translucent finishes to match any decor, and the hardware is available in a variety of powder-coated colours. Lumithree’s quality decorative lighting solutions offer their customers a diverse range of unique and flexible… Read More…

  • Magic Lite: Tri-Proof Lights

    Magic Lite: Tri-Proof Lights

    Tri-Proof Lights are a durable lighting solution that can replace traditional linear fluorescent luminaires. Tri-Proof Lights are designed for a variety of applications requiring, dust-, moisture- and impact-resistance. Suitable environments such as corridors, stairwells, warehouses, parking garages and car washes allows this versatile fixture in a variety of applications. Read More…