Study Results could Lead to a New Class of Materials for Making LEDs

Xianfeng Duan

 

The California NanoSystems Institute’s Xiangfeng Duan A new study by researchers from the California NanoSystems Institute at UCLA is the first demonstration of electroluminescence from multilayer molybdenum disulfide, or MoS2, a discovery that could lead to a new class of materials for making LEDs. The study, led by Xianfeng Duan, professor of chemistry and biochemistry, was published in the journal Nature Communications on July 1, 2015.

Over the last decade, advances in LED have helped to improve the performance of devices ranging from television and computer screens to flashlights. As the uses for LEDs expand, scientists continue to look for ways to increase their efficiency while simplifying how they are manufactured. In the new study, Duan and first author Dehui Li, a postdoctoral scholar in Duan’s lab, created the first multilayer molybdenum disulfide device that shows strong luminescence when electrical current is passed through it.

In its single-layer form, molybdenum disulfide is optically active, meaning that it emits light when electric current is run through it or when it is shot with a nondestructive laser. Multilayer molybdenum disulfide, by contrast, is easier and less expensive to produce, but it is not normally luminescent.

“We were trying to make a vertically stacked light-emitting device based on monolayer MoS2, but it was difficult to get the efficiency as high as we wanted,” says Duan. “On the other hand, it was rather surprising for us to discover that similar vertical devices made of multilayer MoS2 somehow showed very strong electroluminescence, which was completely unexpected since the multilayer MoS2 is generally believed to be optically inactive. So we followed this new lead to investigate the underlying mechanism and the potential of multilayer MoS2 in light-emitting devices.”

Duan and his team used a technique called electric field-induced enhancement, which relocates the electrons from a dark state to a luminescent state, thereby increasing the material’s ability to convert electrons into light particles, or photons. With this technique, the multilayer MoS2 semiconductors are at least as efficient as monolayer ones.

Duan’s team is currently moving forward to apply this approach to similar materials, including tungsten diselenide, molybdenum diselenide and tungsten disulphide, with the goal of helping to create a new generation of light-emitting devices from two-dimensional layered materials, which are less expensive and easier to use in manufacturing.

Read the article in Nature Communications www.nature.com/ncomms/2015/150701/ncomms8509/full/ncomms8509.html

 

Related Articles


Changing Scene

  • LEDVANCE Expands Ontario Presence with New Specification Agent

    LEDVANCE Expands Ontario Presence with New Specification Agent

    LEDVANCE is pleased to announce the appointment of Sterling Architectural Products Ltd. (Sterling Lights) as their new specification agent in Ontario. This partnership strengthens LEDVANCE’s presence in the region and reinforces their commitment to serving the professional lighting design and specification community with innovative, reliable lighting solutions. With decades of experience and a service-driven mindset,… Read More…

  • May 29, 2025 - Eureka Wins Three 2025 Red Dot Awards for Product Design

    Eureka Wins Three 2025 Red Dot Awards for Product Design

    Eureka is pleased to announce that its Velia, Cirra, and Junction luminaires have each received a 2025 Red Dot Design Award for Product Design. It is the 11th consecutive year that Eureka products have been honored with this prestigious award, which is a testament to the company’s consistency and relentless drive to design exceptional luminaires.… Read More…


Design

  • What is Human Centric Lighting: Benefits & Applications

    What is Human Centric Lighting: Benefits & Applications

    Human centric lighting (HCL) is a kind of illuminated way based on human physical and psychological needs. Its core goal is to imitate the changes in natural light to support the body’s circadian rhythm, improve visual comfort, and enhance mood. The key element of human centric lighting contains dynamic ​color temperature adjustment, adjustable brightness, spectrum… Read More…

  • Mac’s II Agencies: Case Study – Tesoro, Vancouver, BC

    Mac’s II Agencies: Case Study – Tesoro, Vancouver, BC

    At the crest of False Creek, Tesoro stands as a contemporary interpretation of classic luxury, offering 92 exclusive waterfront homes in the heart of Vancouver. Developed by Concert Properties, this 17-story residential tower embraces a distinctly modern character, harmonizing sleek design with timeless sophistication. The vision for Tesoro extended beyond its architectural presence—it was about… Read More…


New Products

  • Elevate Your Lighting with Magic Lite’s CCT Streamline Tape & Rotating Scene Control Panel

    Elevate Your Lighting with Magic Lite’s CCT Streamline Tape & Rotating Scene Control Panel

    Looking for the ultimate in flexibility and flawless aesthetics for your next lighting project? Meet the new CCT Streamline Tape and Rotating Scene Control Panel from Magic Lite—your solution for perfectly tunable, zero-pixelation illumination. Indoor and Outdoor options – both cuttable and re-connectable! Read More…

  • GVA Lighting: PIXEL GEN2 COLOR CHANGING

    GVA Lighting: PIXEL GEN2 COLOR CHANGING

    PIXEL GEN2 is the second generation of the direct-view PIXEL series, designed for dynamic color effects, low-resolution image displays, and media façades. Built on the award-winning COLOR-STREAM platform, it delivers 16X faster communication than DMX, ensuring ultra-smooth dimming and real-time responsiveness. With INFINITY technology, PIXEL GEN2 supports lighting circuits of up to 1,565 PIXELs, providing… Read More…