New IEA 4E SSL Annex Literature Review Offers Insights into Complex area of LED lifetime testing

LDS SSL IEA report 400

June 21, 2021

A new report by the IEA 4E Solid State Lighting Annex provides a look across the body of literature on lifetime definitions for LEDs and LED products. The reports looks at failure mechanisms, accelerated life tests and test methods for estimating lifetime, and provides some recommendations. There is currently no agreement as to which test method can best estimate the lifetime of LED lighting products and the report thus addresses a key issue for regulators and industry interested in deployment of LED technologies.

Lighting plays an essential part in everyday life, enabling people to extend their working day, improve their quality of life and expand the productivity of our workforces. However, lighting accounts for approximately 15% percent of global electricity end-use, which comes with a heavy climate and environmental impact. However, while the demand for energy services continues to grow, lighting represent one of the few areas where the energy use has been reduced globally over the last decade. This is thanks to LED technologies, which is rapidly taking over as the preferred lighting technology.

LED lighting offers many advantages such as lower energy consumption, better quality light, improved optical performance and longer lifetime than conventional lighting products. And, even though many lighting test standards have been published, there isn’t agreement as to which test method can best estimate the lifetime of LED lighting products.

Today’s reportLiterature Summary of Lifetime Testing of Light Emitting Diodes and LED Products, seeks to address this issue, by survey and summarise the literature, and make some recommendations as to which approach is best. The report draws a clear distinction between the two types of LED product failure: (1) Catastrophic failure and (2) Parametric failure.

Failure Modes

Catastrophic failure represents a change in the LED lighting system that results in sudden cessation of light output from the LED system, such as a failure in a soldered joint in the driver.  Parametric failure is characterised as a gradual change over time until the LED product is no longer producing acceptable light.  This could include for example, gradual reduction in light output or a shift in the colour of the light produced.

“Lifetime testing is a critical aspect of overall product testing for LED products,” said Professor Georges Zissis, Chair of the SSL Annex’s Management Committee and representative from France. “This report was prepared for us by the experts at the Lighting Research Centre in New York, USA and it offers a high-level summary of all the recent lifetime literature and failure mechanisms, giving guidance on which approach is deemed most effective today.”

The study found that most lifetime test method standards in use presently consider only parametric failure, the light output maintenance of the LED product. However, studies have shown that lighting products in applications can fail parametrically or catastrophically, and the literature suggests that LED system lifetime depends on both the application environment and the use pattern. Taken together, these conditions cause high LED junction temperature (which degrades the components surrounding the chip and leads to parametric failure) and thermal stress at the interconnects (which results in broken connections and leads to catastrophic failure). The study concludes therefore that to accurately estimate the life of LED lighting systems, the test method and the experiment setup must have the ability to change the environmental conditions and the on-off switching pattern.

Recommended Pathways

The report concludes by recommending two potentially successful life test methods for LED lighting systems, one being the test method adopted by the European Commission Regulation (EU) 2019/2020 which establishes a long-duration switching cycle test method that combines lumen maintenance and switching cycles into one test method.  A second promising test method is one proposed by the Lighting Research Centre and formalised by the Alliance for Solid-State Illumination Systems and Technologies (ASSIST).  The LRC method has the added advantage that it can be used to predict LED system lifetime based on specified or expected environmental conditions and use patterns, although it does not consider the influence of relative humidity as an independent variable.

Go HERE to download a copy of the report

Related Articles


Changing Scene

  • Dec 5, 2025 - Liteline Announces Improvements to Production Facilities to Provide Even More Made in Canada Lighting Solutions

    Liteline Announces Improvements to Production Facility to Provide Even More Made in Canada Lighting Solutions

    Liteline has announced the transformation of their Production Facility! What was once home to their Safety and Performance Test Labs has now been completely repurposed. With those labs relocated and renovated, Liteline’s production team has taken over the space to expand their in-house capabilities, everything from assembling fan favorites to building custom configurations. In this… Read More…

  • Dec 4, 2025 - Wow Lighting and Controls Announces New Partnership with Eterna Light

    Wow Lighting and Controls Announces New Partnership with Eterna Light

    Wow Lighting and Controls is excited to welcome Eterna Light to their lighting family! A Canadian manufacturer based in Côte Saint-Luc, Quebec, Eterna Light specializes in high-end architectural luminaires for commercial, hospitality, and retail projects. Their broad lineup includes downlights, cylinders, track lighting, and advanced backlighting solutions, all designed to bring flexibility, performance, and timeless… Read More…


Design

  • Understanding IK Ratings: Why Impact Resistance Matters in LED Lighting

    Understanding IK Ratings: Why Impact Resistance Matters in LED Lighting

    When selecting your lighting fixtures, performance, efficiency, and longevity are often top priorities. But there’s another critical factor that’s sometimes overlooked — impact resistance, measured by an IK rating. Whether your lighting is installed in a rugged industrial facility or an exposed outdoor environment, understanding IK ratings ensures your fixtures can handle the job safely… Read More…

  • Understanding Melanopic Lighting for Improved Indoor Environments

    Understanding Melanopic Lighting for Improved Indoor Environments

    Light plays a crucial role not only in our ability to see but also in regulating our internal body clock, sleep patterns, and overall well-being. Traditional lighting design primarily focuses on visual comfort and task illumination. However, recent advancements have shed light on the concept of melanopic lighting, which specifically targets the non-visual effects of… Read More…


New Products

  • RENO Lighting: AURA Series – Mini Linear Recessed Spot Light – RENO-LRSL-5CCT-8W-WH

    RENO Lighting: AURA Series – Mini Linear Recessed Spot Light – RENO-LRSL-5CCT-8W-WH

    RENO’s AURA Series Mini Linear Recessed Spot Light offers sleek, unobtrusive lighting with powerful, focused illumination. Ideal for modern interiors, it seamlessly integrates into ceilings or walls, providing a minimalist aesthetic while enhancing the ambiance. Perfect for highlighting art, architectural details, or creating mood lighting in any space. Engineered with a distinctive, deeply set light… Read More…

  • EB Horsman: Philips LED Lamps & TLED Tubes – Efficient Lighting Solutions for Any Space

    EB Horsman: Philips LED Lamps & TLED Tubes – Efficient Lighting Solutions for Any Space

    Looking to upgrade your lighting with high-efficiency LED solutions? Philips offers a wide range of LED lamps and TLED retrofit tubes that deliver energy savings, long life, and professional-grade illumination for commercial and residential projects. Philips LED lamps provide consistent brightness and excellent color rendering, making them ideal for offices, retail environments, warehouses, and homes.… Read More…