CRI Modulation: Future Lighting Control Strategy?

CRI Modulation

Craig DiLouie

LED lighting has made a new dimension of lighting control, colour tuning, widely available. By mixing separately dimmable arrays of warm- and cool-white, saturated colours (RGB+A), or a mix of the two, correlated colour temperature (CCT) can be tuned manually or automatically based on various application needs.
Besides CCT, the source’s colour rendering index (CRI) can be raised or lowered within a given range. The maximum depends on the source, while the minimum depends on the designated CCT. This is accomplished by gradually reducing the red component of a red, blue, green and either yellow or amber mix.

While the primary benefit of modulating CCT is aesthetics, the primary benefit of modulating CRI is energy savings. As CRI declines, luminous efficacy increases. This creates a potential energy savings opportunity in spaces that must remain illuminated at full output and constant CCT while unoccupied.

David L. Bay, LC, corporate engineer for Osram Sylvania, sees airport concourses as a potential application for this novel control strategy. The lights must remain on and at full output at night for safety, though for much of the night large parts of the concourse may be unoccupied. CCT must be maintained because changing CCT would be objectionable from an aesthetic point of view.

In this application, the lighting in the main circulation spaces would be zoned to operate at full output and specified CCT and CRI. Lighting in peripheral areas would be separately zoned, with CRI reduced based on occupancy or a schedule.

“CRI modulation would be suitable for applications with certain characteristics,” Bay says. “Notably, applications where maintaining high lux levels for safety or other reasons is important, and where the space is granularly occupied at different times of the day.”

Actual energy savings would depend on the application, though Bay believes at least 10% would be typical, and up to 25+% has been demonstrated. Another question is whether occupants would find a change in CRI objectionable.

In 2005, the Massachusetts Institute of Technology (MIT) conducted a study in an open office and two private office spaces at the institute’s Media Lab. The researchers wanted to know how far CRI could be reduced before occupants noticed the change and/or found it objectionable.

Eight OSRAM SYLVANIA LED panels were installed in the ceiling of the open office and two each in the private offices. These LED panels were colour tunable and of an experimental design. CCT was maintained at 5000K, light levels at about 30 footcandles. The study participants —13 graduate students with no prior knowledge of the study — were asked to perform tasks in the spaces. While they were working, CRI was adjusted over a period of three seconds from 89 to 68. Shortly afterwards, a pop-up questionnaire appeared on their screen asking what activity they were doing and whether they noticed the change.

Three hundred and twenty of these queries received responses; of these, 203 responses (63%) indicated a change had not been noticed. Changes were more likely to be noticed when occurring in the immediate area or simultaneously in the immediate and peripheral areas. Changes were least likely to be noticed when they occurred solely in a peripheral area.

“Experience suggests CRI modulation within an occupied space will not be well accepted,” Bay notes. “The concept of CRI dimming is currently founded on modulating CRI of unoccupied spaces adjacent to occupied spaces.”

CRI modulation was considered a good potential if not practical strategy at the time of the study. LED technology has made significant advances since then, making it practical. Still, Bay notes, the requirements of colour-mixing LEDs and granular zoning pose a cost that challenges economic viability. As LED technology continues to progress, however, CRI modulation may become viable from an economic as well as a technological standpoint.

Bay sees CRI modulation being paired with another potential control strategy, which is using LED general lighting as an indicator. For example, peripheral lighting in a private office could automatically adjust to become red when the occupant is on the phone, both saving energy while indicating the occupant should not be disturbed. This potential has many applications.

“Colour tuning has opened a vast potential in lighting design and application, and we are just beginning to pioneer,” Bay says. “While these applications focus on aesthetics with some interest in circadian health, this extraordinary emerging dimension of lighting control may also be used to maximize energy savings.”


Craig DiLouie, LC is acting education director for the Lighting Controls Association.

This article was reprinted with permission of the Lighting Controls Association, www.lightingcontrolsassociation.org

 

 

Related Articles


Changing Scene

  • LEDVANCE Expands Ontario Presence with New Specification Agent

    LEDVANCE Expands Ontario Presence with New Specification Agent

    LEDVANCE is pleased to announce the appointment of Sterling Architectural Products Ltd. (Sterling Lights) as their new specification agent in Ontario. This partnership strengthens LEDVANCE’s presence in the region and reinforces their commitment to serving the professional lighting design and specification community with innovative, reliable lighting solutions. With decades of experience and a service-driven mindset,… Read More…

  • May 29, 2025 - Eureka Wins Three 2025 Red Dot Awards for Product Design

    Eureka Wins Three 2025 Red Dot Awards for Product Design

    Eureka is pleased to announce that its Velia, Cirra, and Junction luminaires have each received a 2025 Red Dot Design Award for Product Design. It is the 11th consecutive year that Eureka products have been honored with this prestigious award, which is a testament to the company’s consistency and relentless drive to design exceptional luminaires.… Read More…


Design

  • 60-Watt vs 100-Watt Light Bulbs: Brightness & Wattage

    60-Watt vs 100-Watt Light Bulbs: Brightness & Wattage

    With the widespread use of LED light bulbs, the replacement and upgrade of different light bulbs have also made the concept of “equivalent wattage” more and more discussed. When comparing 60-watt vs 100-watt bulb, the wattage and brightness are the factors that need to be figured out first. Wattage is used to measure the energy consumption while many… Read More…

  • What is Human Centric Lighting: Benefits & Applications

    What is Human Centric Lighting: Benefits & Applications

    Human centric lighting (HCL) is a kind of illuminated way based on human physical and psychological needs. Its core goal is to imitate the changes in natural light to support the body’s circadian rhythm, improve visual comfort, and enhance mood. The key element of human centric lighting contains dynamic ​color temperature adjustment, adjustable brightness, spectrum… Read More…


New Products

  • LightForm: New Saule-L-01 Suspension Luminaire

    LightForm: New Saule-L-01 Suspension Luminaire

    LightForm is thrilled to introduce Saule, the newest lighting collection from Quebec atelier Larose Guyon, now exclusively available at LightForm. Inspired by the gentle grace of the willow tree, Saule is a sculptural light that feels alive. Cascading hand-formed brass leaves shimmer like foliage in the breeze, suspended from arched metal arms that echo the tree’s elegant… Read More…

  • Transform Outdoor Spaces with Lutron: Control, Elegance, & Performance

    Transform Outdoor Spaces with Lutron: Control, Elegance, & Performance

    Outdoor lighting is about more than just light—it’s an extension of the ambiance, design, and comfort of living spaces. With Lutron’s outdoor modules RR-15OUT-BL (for RadioRA 3 systems) and HQR-15OUT-BL (for HomeWorks QS systems), you can offer your clients powerful tools to transform their outdoor projects—whether gardens, patios, pools, or façades. Read More…