Study Results could Lead to a New Class of Materials for Making LEDs

Xianfeng Duan

 

The California NanoSystems Institute’s Xiangfeng Duan A new study by researchers from the California NanoSystems Institute at UCLA is the first demonstration of electroluminescence from multilayer molybdenum disulfide, or MoS2, a discovery that could lead to a new class of materials for making LEDs. The study, led by Xianfeng Duan, professor of chemistry and biochemistry, was published in the journal Nature Communications on July 1, 2015.

Over the last decade, advances in LED have helped to improve the performance of devices ranging from television and computer screens to flashlights. As the uses for LEDs expand, scientists continue to look for ways to increase their efficiency while simplifying how they are manufactured. In the new study, Duan and first author Dehui Li, a postdoctoral scholar in Duan’s lab, created the first multilayer molybdenum disulfide device that shows strong luminescence when electrical current is passed through it.

In its single-layer form, molybdenum disulfide is optically active, meaning that it emits light when electric current is run through it or when it is shot with a nondestructive laser. Multilayer molybdenum disulfide, by contrast, is easier and less expensive to produce, but it is not normally luminescent.

“We were trying to make a vertically stacked light-emitting device based on monolayer MoS2, but it was difficult to get the efficiency as high as we wanted,” says Duan. “On the other hand, it was rather surprising for us to discover that similar vertical devices made of multilayer MoS2 somehow showed very strong electroluminescence, which was completely unexpected since the multilayer MoS2 is generally believed to be optically inactive. So we followed this new lead to investigate the underlying mechanism and the potential of multilayer MoS2 in light-emitting devices.”

Duan and his team used a technique called electric field-induced enhancement, which relocates the electrons from a dark state to a luminescent state, thereby increasing the material’s ability to convert electrons into light particles, or photons. With this technique, the multilayer MoS2 semiconductors are at least as efficient as monolayer ones.

Duan’s team is currently moving forward to apply this approach to similar materials, including tungsten diselenide, molybdenum diselenide and tungsten disulphide, with the goal of helping to create a new generation of light-emitting devices from two-dimensional layered materials, which are less expensive and easier to use in manufacturing.

Read the article in Nature Communications www.nature.com/ncomms/2015/150701/ncomms8509/full/ncomms8509.html

 

Related Articles


Changing Scene

  • The DLC’s New Working Group to Collaborate and Advise on Horticultural Lighting Controls

    May 14, 2024 Lighting and controls manufacturers, engineering and design consultants, non-profits, researchers, and indoor cultivators are among stakeholders recently appointed help the DLC accelerate the horticultural lighting industry’s adoption of networked lighting solutions that advance both crop production and energy efficiency. “The controlled environment agriculture industry has grown steadily since the DLC created its… Read More…

  • CDm2 Lightworks Expands Team in BC’s Interior and Vancouver Island

    May 14, 2024 CDm2 is excited to announce the expansion of their team into the vibrant construction markets of British Columbia’s Interior and Vancouver Island. This expansion is designed to align growth with the dynamic changes in these local economies. “As more companies and industries move to smaller communities, it’s vital that our services grow… Read More…


Design


New Products

  • Introducing MaxLite’s LS3 Series: Controls-Ready LED Strip Lighting

    May 10, 2024 The new generation of LS Series Linear Strips (LS3 Series) features field-selectable wattages, CCTs and field-installable controls. Offered in three sizes (2′, 4′ and 8′), with each providing nine combinations of colour temperatures and wattages, as well as optional c-Max controls, one product can replace 27 different SKUs for stocking distributors! With… Read More…

  • Discover the Power of SATCO|NUVO’s Hi-Pro A21 High Lumen Lamps

    May 10, 2024 SATCO|NUVO’s LED Hi-Pro A21 Lamps offer ColorQuick convenience ideal for commercial projects. Choose from 2700K/4000K/5000K colour temperatures at installation to achieve the desired atmosphere for the environment. Designed to work in 120V to 277V fixtures, these lamps are compatible with ballast bypass fixtures and are dimmable when used in 120V applications. With… Read More…