The Lumen Maintenance Gap

October 16, 2018

This article is an excerpt from a technical brief, “Understanding LM-80, Lumen Maintenance, and LED Fixture Lifetime,” by Philips Color Kinetics.This article is an excerpt from a technical brief, “Understanding LM-80, Lumen Maintenance, and LED Fixture Lifetime,” by Philips Color Kinetics.

Test results of lumen maintenance in conventional and LED light sources differ considerably. This is known as the lumen maintenance gap. These tests are performed to determine the useful life of a light source. But how do we compare lighting technologies satisfactorily if test results of a same designation do not mean the same thing? These lumen maintenance measurement distinctions are those we will examine in this article, as a clear understanding of this gap will have a significant impact on the installation, maintenance and replacement cost calculations of lighting products. 

As an example of the benefits offered by lumen maintenance, the World Market Center in Las Vegas, Nevada (shown in photo), uses over 8,000 ft (2,438.4 m) of eW Cove Powercore linear LED lighting fixtures from Philips Color Kinetics to illuminate the complex geometries of the atrium in one of its buildings. LED cove lighting offers advantages over conventional cove lights in high-end installations such as this one. With useful life of up to 70,000 hours, and a very low failure rate, LED cove lights virtually guarantee reliable illumination around the clock for many years, without dark spots from lamp outages that can mar the elegant and uniform presentation of a premier space.

Lumen maintenance of LED and traditional light sources

When controlled, LED light sources can have a useful life that lasts considerably longer than the rated life of a conventional lighting source. Here’s an example: the World Market Center in Las Vegas, Nevada (shown in photo) uses over 8,000 ft (2,438.4 m) of eW Cove Powercore linear LED lighting fixtures from Philips Color Kinetics to illuminate the complex geometries of the atrium in one of its buildings. LED cove lighting offers advantages over conventional cove lights in high-end installations such as this one. With useful life of up to 70,000 hours, and a very low failure rate, LED cove lights virtually guarantee reliable illumination around the clock for many years, without dark spots from lamp outages that can mar the elegant and uniform presentation of a premier space.

The following table presents comparative data for the typical useful life range of various light sources.

Testing conventional light sources 

LM-65-14 is a document that defines life testing procedures for compact fluorescent lamps (CFLs), while LM-49-12 defines life testing procedures for incandescent filament lamps. Both publications establish testing conditions, testing sample sizes, and valuation methods used for generalizing test data. 

For CFLs, LM-65 specifies that a statistically valid sample be tested at an ambient temperature varying between 15⁰C and 40⁰C, in a cycle of three hours on and 20 minutes off (CFL life is appreciably shortened by the frequency with which the lamp is turned on and off). The point at which half the lamps fail is the rated average life for that lamp.

For incandescent filament lamps, LM-49 stipulates that a statistically valid sample be tested within the manufacturer’s stated operating temperature range and voltage. Lamps are turned off and allowed to cool to ambient temperature once a day (usually for 15 to 30 minutes). As with CFLs, rated life for incandescent filament lamps is the total operating time at which half the lamps cease to operate. 

Testing conventional LED sources

As of 2014, the technical publication entitled LM-84-14 was introduced as a means to fill a gap created by the lack of standardized LED fixtures and lamps testing methods. Even today, the rated life is calculated according to tests performed on lighting system diodes and not on the overall lamp or fixture system. Unfortunately, at this point, the LM-84 publication has disclosed only light system test parameters and is unable to provide other calculation methodology to issue results that might establish a specific rated life.

Many fixture manufacturers develop their individual interpretation of the life test results and establish in their own way the useful life of light sources. Often, they do not share the extrapolation or evaluation methods, so any comparison between the products of various manufacturers becomes both difficult and imprecise.
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Useful life is not fixture lifetime 

It’s important to keep in mind that useful life and fixture lifetime are two very different things. The useful life of a fixture refers to the lumen maintenance projections of the LED sources integrated into that fixture — in plain English, the number of hours an LED lighting fixture will deliver a sufficient amount of light in a given application. 

Fixture lifetime, on the other hand, has to do with the reliability of the components of an LED lighting fixture as a system, including the electronics, materials, housing, wiring, connectors, seals, and so on. The entire system lasts only as long as the critical component with the shortest life, whether that critical component is a weather seal, an optical element, an LED, or something else. From this point of view, LED light sources are simply one critical component among many, although they are often the most reliable component of the whole lighting system. 

Read the full document here: www.colorkinetics.com/Learn/docs/LEDLifetime.pdf

Related Articles


Changing Scene

  • LEDucation 2024 – Concluded with Record-Breaking Attendance

    The LEDucation Trade Show and Conference, organized by the Designers Lighting Forum New York, wrapped 2024 with record-breaking attendance, welcoming more than 10,000 registrants from all aspects of the lighting industry. LEDucation celebrated its 18th year in New York City March 19–20 at the New York Hilton Midtown, becoming North America’s largest annual lighting industry… Read More…

  • Part 1: How Many Studies Does it Take to Change a Lightbulb?

    March 18, 2024 How studies in vision inform lighting standards at Night By Noah Sabatier Changing a light bulb in our home is perhaps the most simple task in which we can still credit ourselves for performing household maintenance. The amount of thought such an operation receives rarely extends beyond looking for the most efficient… Read More…


Design

  • Case Study: Windsor Family Credit Union (WFCU) with Salex SW

    Case Study: Windsor Family Credit Union (WFCU) with Salex SW

    February 6, 2024 Since 1940, WFCU Credit Union is a prominent and forward-thinking financial institution based in Windsor and Essex County. For over 80 years, WFCU has been dedicated to serving Ontario residents, community, organizations, small businesses, commercial entities, and public institutions. Their new headquarters in Kitchener was created as they continue to grow their… Read More…

  • Coaticook Suspended Footbridge: An Ever-Changing Luminous Canvas, Painted by Nature

    Coaticook Suspended Footbridge: An Ever-Changing Luminous Canvas, Painted by Nature

    December 5, 2023 At 170 m (554 ft) long and 50 m (160 ft) high, the Coaticook Canyon Bridge at Parc de la Gorge de Coaticook is one of the longest suspension footbridges in North America and one of the most popular tourist attractions in the Eastern Townships. For several years, the Parc de la… Read More…


New Products

  • Liteline ORBIT 2″ Gimbal Recessed Fixture

    The ORBIT is a 5 watt 2″ gimbal recessed light fixture for retrofit applications, with 360° rotation and 80° tilt. It is a high-performance, easy to install downlight solution that offers good light output, energy-efficiency and streamlined design. Suitable for wet locations and ideal for vaulted ceiling and soffit installations. BodyDurable aluminum body with 360°… Read More…

  • Acclaim Lighting Introduces All-Weather Terra Drum with Multiple Color Options

    Acclaim Lighting introduces the Terra Drum series, rugged, all-weather inground, drive-over ready rated fixtures designed for recessed façade and tree lighting applications.  Available in 15-, 30- and 60-watt versions, Terra Drums have a drive-over rating of up to 6,000 lbs. (2,721kg). They are offered in 2400K, 2700K, 3000K, 3500K, 4000K, Dynamic White (2700K-6000K), Quad Spectrum… Read More…