Lighting Design & Specification

July 22, 2019

Dorukalp Durmus 

Next time you’re in a museum or art gallery, observe each painting a little more closely. You may notice cracks on the surface of the canvas, especially if the painting is very old.

The damage you see is caused by radiant energy striking the painting’s surface — and light (visible radiation) causes irreversible damage to artwork.

However, all is not lost. Our new research shows that optimized smart lighting systems can reduce damage to paintings while preserving their colour appearance.

The dilemma

Damage to artwork by infrared, ultraviolet and visible radiation is well documented. When a photon (an elementary light particle) is absorbed by a pigment in paint, the pigment molecule elevates to a higher energy state. In this excited state, the molecule’s chemical composition changes. This is called a photochemical action. 

Viewed from the human perspective, the photochemical action manifests itself as cracks, discolouration, or surface hardening.

Not surprisingly, daylight, which includes infrared and ultraviolet radiation, is highly damaging to paintings. In museums, it is common practice to use incandescent, and more recently, LEDs, to reduce damage. 

However, a group of researchers showed that light can cause colour degradation regardless of the lighting technology. Bright yellow colours in Van Gogh’s famous Sunflowers are turning dark brown due to absorption of blue and green light from LEDs. Research on the conservation of artwork makes it look like this is a losing battle. 

Of course, you will be right in thinking that the best conservation method would be the complete absence of light. But we need light for visibility and to appreciate the beauty of a painting. This leaves us with a dilemma of two conflicting parameters: visibility and damage.

Light optimization

Lighting technology in itself may not be enough to tackle this dilemma. However, the way we use technology can make a difference. 

Our approach to address this problem is based on three key facts: 

  1. light triggers photochemical actions only when it is absorbed by a pigment
  2. the reflectance factor of a pigment (its effectiveness in reflecting light) determines the amount of light absorption
  3. light output (composition of the light spectrum, and the intensity of the light) of lighting devices, such as LEDs, can be fine-tuned.

It is possible to measure the reflectance factor of a painting and optimize lighting to reduce absorption. Previous research shows that optimizing light to lessen absorption can reduce energy consumption significantly, and with no loss in visual experience. Objects look equally natural and attractive under optimized light sources compared to regular white light sources. 

In this new study, we optimized LEDs for five paintings to reduce light absorption. Using a genetic algorithm (an artificial intelligence technique), we reduced light absorption between 19% and 47%. Besides the benefits for the painting, this method almost halved the energy consumed by lighting. 

In addition to increased sustainability and art conservation, the colour quality of the paintings was another parameter in our optimization process. Colour appearance and brightness of paintings were held constant not to lower the appreciation of the artwork.

This is possible due to a quirk in our visual system. Photoreceptor cone cells, the cells in our retinas that enable human colour vision, are not equally sensitive to the whole visible spectrum. 

Different combinations of wavelength and intensity can result in identical signals in our brain. This understanding gives us the flexibility of using different light sources to facilitate identical colour appearances. 

This smart lighting system requires scanning of the artwork to obtain colour information. Then, a precise projection system emits optimized lighting to the painting. 

This method offers a solution to extend the lifetime of works of art, such as the world-famous Mona Lisa, without leaving them in the dark.

Dorukalp Durmus is an Honorary Associate, University of Sydney. This article was first published online by the University of Sydney: theconversation.com/how-the-right-lighting-could-save-the-mona-lisa-95938. It has been lightly edited.

Photo source: Juan Di Nella on Unsplash

Changing Scene

  • Prev
Francis Chan, General Manager of Ultrasave Lighting, has announced his retirement from the company ...
Pioneer Lighting Inc.’s new interactive website features easily accessible updated spec ...
Standard’s photometric data files (IES files) have been updated and optimized and are now ...
The appearance of one of Europe’s most important cathedrals has been transformed with a new, ...
A special jury of industry experts has chosen the winners of the New Product Competition at MCEE ...
BizVibe has committed to creating a continuously improving platform for electrical and lighting ...
A Hamilton, Ontario retirement and long-term care residence recently received an $18,000 incentive ...
Power management company Eaton and its Cooper Lighting division have released of the 2014 SOURCE ...
Lind Equipment’s LE965LEDC, the latest in its Beacon Light line of LED floodlights, is a 30W ...
Eaton’s Cooper Lighting division has introduced new Halo Surface LED Downlights for new ...

Design

  • Prev
The ongoing sea change between fluorescent and light-emitting diode (LED) lighting technologies ...
On Cartier Avenue in Quebec City, 34 giant lampshades backlit with LEDs and decorated with works by ...
The sturdy rectangular structure was built in the late 1470s as part of the Vatican’s fortified ...
The International Year of Light “is a global initiative that will highlight the importance of ...
It is no secret that lighting design plays a central part in the atmosphere of an interior ...
A lamp made with graphene, said by its U.K. developers to be the first commercially viable ...
Researchers from the Ecole Polytechnique Fédérale de Lausanne (EPFL) have used optogenetics to ...
A single backbone fibre ring of LuminexGigaCore Ethernet switches unifies and simplifies all the AV ...
The evolution of lighting technology is giving birth to amazing new possibilities. Where lighting ...
From May 3 to 7, New York City’s Javits Centre hosted the 26th edition ofLightfair ...

LED Technology

  • Prev
Mention LEDs in a conversation, and what first springs to mind is low energy use. But LEDs offer ...
LED's Part 2The benefits of LEDs almost seem too good to be true, and in some cases may be. Rapid ...
Helping LED Luminaire manufacturers develop products and gain market access is the intent behind ...
You may soon be able to add “growing space vegetables” to the list of uses for LEDs. Researchers at ...
Showing off your modern lighting advancements makes a powerful statement to customers. You’ll be ...
Acuity Brands, Inc. has launched a next-generation OLED product portfolio, including the ...
Halo light-emitting diode (LED) downlights from Eaton’s Cooper Lighting Division are featured in ...
LED keeps evolving. Six or seven years ago no one thought that LED was bright enough or ...
Although a relatively new technology, organic light-emitting diodes, OLEDs, are labelled today’s ...
Organic LEDs (OLEDs) are an interesting and promising new display technology. They provide a number ...

New Products

  • Prev
Eaton’s Lumark Caretaker light-emitting diode (LED) area luminaire is ideal for area and ...
Eaton’s new Neo-Ray Index light-emitting diode (LED) pendant luminaire from Cooper Lighting ...
Legrand’s Pass & Seymour Harmony Tru-Universal Dimmer comes with self-calibrating ...
iteline Corporation’s new 4” Versa-Series pot lights provide maximum safety and ...
Researchers at Duke University have developed a new method to make fluorescent molecules emit ...
The Fluke 1000FLT performs 5 essential tests in less than 30 seconds with one compact tool ...
Eaton’s Portfolio surface-mount light-emitting diode (LED) luminaire from its Cooper Lighting ...
Eaton’s Metalux Encounter and SkyRidge light-emitting diode (LED) luminaire families are now ...
Aimed at the residential market, Legrand’s new Pass & Seymour arc fault circuit ...

Latest News

Kerrwil Publications

538 Elizabeth Street, Midland,Ontario, Canada L4R2A3 +1 705 527 7666
©2019 All rights reserved

Use of this Site constitutes acceptance of our Privacy Policy (effective 1.1.2016)
The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of Kerrwil